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Abstract

Basic elements of a qualitative dynamics of systems with slowly accumulating damage are presented. The
relationship of averaging to equations relating damage evolution rate with current damage state and load is
discussed. The particular case of a scalar damage variable with one load parameter is examined in some detail.

Well-known phenomenological features of fatigue tests are used as a guide. Using asymptotic arguments for small
initial damage, conditions are obtained under which the time to failure is essentially determined by the initial
damage state, and essentially independent of the failure criterion. A suitable form for damage evolution equations is
deduced for a class of fatigue problems. Comparisons with published data show that this qualitative dynamics

approach produces a model that ®ts, and predicts, the data as closely as a more physically motivated fatigue
model. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Theoretical studies of damage evolution and failure prediction often employ di�erential equations

developed with varying degrees of rigor from some underlying theory of material failure, or perhaps

empirical damage mechanics (Chaboche, 1988a,b; Suresh, 1991; Lemaitre, 1992). In this paper, we

present a more abstract, state-space based framework in which to formulate and evaluate damage

evolution laws. We do not speci®cally tie our models to any particular damage physics, but show how a

few reasonable mathematical assumptions can lead to models that usefully predict damage evolution. In

particular, using qualitative arguments, we develop a simple model for a class of fatigue problems. The

parameters in the model can be ®tted from experiments. On ®tting these parameters to some published
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data, we ®nd that the model quantitatively matches the data as closely as a more physically motivated
fatigue model.

Models similar in form to those considered here can be found elsewhere in the damage, fatigue and
fracture mechanics literature. The primary contribution of this paper, however, is to demonstrate that a
study of the qualitative dynamics of damage evolution, as indicated by certain well-known observations
from the experimental literature, can shed great light on the necessary mathematical form of the
required evolution laws, without being necessarily tied to a particular damage mechanism.

We do not wish, however, to deemphasize the importance of physics: in modeling, it is always useful
to know about underlying physical processes. Our aim is only to show that models and methods
sometimes thought of as arising only from the physics of material failure seem less specialized when
viewed from a general dynamical systems perspective, implying that similar modeling approaches might
be useful for types of damage that involve signi®cantly di�erent kinds of material failure, and even
systems having no material failure per se.

The approach taken here makes explicit several features of the failure prediction problem which we
believe should be addressed by condition monitoring programs. In particular, we emphasize the notions
of damage state space, failure surface, time to failure and sensitivity to initial damage state. We attempt
to make a clear connection between the forms of damage evolution laws and their qualitative e�ects on
quantities of interest such as time to failure and sensitivity to initial state.

In this paper, systems with slowly accumulating damage are viewed as hierarchical dynamical systems
with two distinct time scales: regular operation of these systems occurs on a fast time scale, while
damage evolves, at least initially, on a slow time scale. In section 2 we show how the full state space
description of hierarchical systems with evolving damage, via the method of averaging, can yield simple
damage evolution laws. In section 3 our basic assumptions are presented, and in section 4 some relevant
ideas from engineering practice are discussed. With the basic framework established, section 5 presents a
detailed analysis of the scalar damage variable case. Qualitative behaviors of several basic damage
evolution laws are examined. An application example is provided in section 6, where a damage rate law
developed earlier is shown, on some parameter ®tting, to match and predict multi-level fatigue data
from the literature. Conclusions are presented in section 7.

2. Averaging and damage evolution laws

2.1. Time scale separation

The observation of time scale separation in hierarchical systems with slow damage is not new. This
same idea is, for example, emphasized in Natke and Cempel (1997). It is not usually made explicit,
however, that such time scale separation allows one to apply the method of averaging (or a related
method, such as multiple scalesÐVerhulst, 1990; Nayfeh and Mook, 1995) to obtain approximate
equations relating damage evolution rate to current damage state and load.

In our study of ®nite dimensional systems with damage, we consider dynamical systems of the form

_x � f �x, m�f�, F, t� �1a�

_f � Eg�f, x, t� �1b�
where: x is a fast (possibly vector-valued) dynamic variable viewed as the `macroscopic' or directly
observable state of the system; f is a slow (also possibly vector-valued) `hidden' dynamic variable
representing the damage state; 0 < E � 1 is a small positive number interpreted as a rate constant; m is
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a (possibly non-invertible) function of f representing the material parameters in the fast subsystem (1a);
F is a vector of parameters representing external loads; and t is time. Overdots denote time derivatives.
We remark that Eqs. 1 also include continuum damage evolution if the vector ®elds f and g are allowed
to be partial di�erential operators in the space variables, though we consider only the ®nite dimensional
case.

Note that if E=0 in Eq. (1b), the damage f is constant, and m(f ) is a vector of parameters in Eq.
(1b). If E is nonzero but small, then f evolves slowly, and the evolution of x over short to intermediate
lengths of time may be approximately determined by treating m(f ) as constant in Eq. (1a). This is the
heuristic motivation behind the method of averaging (Verhulst, 1990; Sanders and Verhulst, 1985), a
perturbation method used to obtain approximate analytical solutions to nonlinear di�erential equations.

2.2. Averaging procedure

In averaging, the governing equations are usually transformed into `normal form' using variation of
parameters, which implies that explicit analytical solutions are available for the unperturbed case. The
implementation and asymptotic performance of the averaging procedure depends on the particular
properties of the systems under consideration, especially the nature of solutions to the unperturbed
problem.

However, we are not primarily concerned here with averaging as an analytical procedure, but only
with the fact that in many cases of practical importance averaging can be carried out in principle. Our
main interest is to establish the theoretical relationship between the general state space description of
Eqs. (1) and damage evolution laws as typically found in the literature. For simplicity and brevity, we
present the method of averaging in the most basic form required to determine its e�ect on the slow time
subsystem Eq. (1b), and present an example calculation in the Appendix.

At some initial time t=t0, let x=x0 and f=f0. Let X0(f0, x0, t0, F; t ) be the solution to the
unperturbed equation

_x � f �x, m�f0�, F, t�, �2�
with x(t0)=x0. For E>0, we average the right hand side of Eq. (1b), de®ning the function �g by

�g � lim T41
1

T

�t0�T
t0

g�f,X0�f,F;t�,t� dt, �3�

where, in X0, f0 has been replaced by f and the dependence on x0 and t0 has been suppressed. If the
solution to Eq. (2) has transients which decay rapidly leaving a well de®ned steady state solution, the
average �g de®ned in Eq. (3) will be independent of t0. If Eq. (2) has multiple steady state behaviors, then
�g will be dependent on x0 only in that it determines which steady state the system approaches. Thus we
may explicitly ignore the dependence on x0, but implicitly recognize that g- can be multivalued.
Therefore, we write the averaged function of (3) as �g= �g(f, P(F )), assuming that if P(F ) is multivalued,
then we know which solution branch is under consideration.

Up to leading order for small E, the evolution of f is given by the averaged equation

_f � E �g�f, P�F ��:
We can now rescale time using t � Et, to obtain the slow ¯ow equation

_f � g�f, P �, �4�
where we drop the overbar, suppress the dependence of P on F, and let the overdot denote the
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derivative with respect to `slow time' t. Eq. (4) demonstrates how averaging will in general take the
dynamics of the complete hierarchical system of Eqs. (1) into a `damage law' relating the damage
evolution rate to the current damage state and the load (via the parameter vector P ). These ideas are
demonstrated using a simple example problem in the Appendix.

We remark that a basic consequence of averaging is that the right hand side of the slow ¯ow equation
developed above is not explicitly dependent on the slow time t for constant F. Furthermore, if in Eq.
(1a) F is a prescribed function of the slow time t=Et, the functional form of g in Eq. (4) is unchanged
except for the fact that the vector P becomes a known function of t as well. Thus, we do not consider
damage evolution equations where the rate of increase of damage is explicitly dependent on the time
even for the case when the load parameter is constant, though such equations have been proposed in the
literature (Kujawski and Ellyin, 1988).

3. Fundamental assumptions

We now outline the fundamental assumptions and de®nitions used in our study of the slow ¯ow
system of Eq. (4). We focus on simple cases; our aim here is to identify issues important in establishing
a state-space framework for damage evolution. If the physics of an application demands it, these
assumptions may be modi®ed.

1. State of Zero Damage: We assume that a well-de®ned state of zero damage can be identi®ed, and that
we may take this state as f=0

2. Smoothness: We assume that the function g is as smooth as needed over the domain of interest.
3. Failure Surface: We assume that a well-de®ned failure surface exists, de®ned by the equation h(f )=0:

if h(f )> 0 the system has failed, and if h(f ) < 0 it has not.
4. Monotonicity: We assume that damage variables are nondecreasing. In particular, for the special case

of scalar damage, _f is assumed to be nonnegative for all f and P. Thus, we do not consider systems
with `healing'.

Note that item 4 above is not the same as assuming that m(f ) is nondecreasing. For example, depending
on details of its material behavior, a vibrating cracked beam might initially sti�en in the vicinity of the
crack, and then weaken until failure. Thus the sti�ness (if represented by m(f )) is not a monotonic
function of f or of time. However, the beam steadily and irreversibly acquires damage, and f may
reasonably be expected to be a monotonic function of time. Monotonicity is often assumed in other
work as well, and may be thought of as being related to irreversibility.

The foregoing assumptions are not tied to any particular physics of damage. For example, f is not
necessarily the length of a crack. In fact, it is known that the growth rate of small cracks is not a
smooth function of crack length, if the crack length is comparable to microstructural features (James
and de los Rios, 1996; Hussain et al., 1993); however, for systems where damage and failure occur
through fracture, we assume that there is a suitable internal variable that need not be the crack length,
and that evolves monotonically and smoothly.

We will show how under assumptions 1±4 above a qualitative study of candidate damage laws can
identify one that is suitable for a particular application.

4. Relationship to engineering practice

Given the mathematical framework presented above, we now discuss some observations and ideas
from the ®eld of fatigue. These provide guidelines for the rest of this paper. The idea is to examine the
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dynamical features of the physical phenomena being studied, so as to deduce restrictions on, and
appropriate forms for, Eq. (4). The facts discussed here can be found in engineering design handbooks
(Rothbart, 1996), or books on fatigue (Suresh, 1991).

The oldest and most widely used approach to the study of fatigue failures is through S±N curves,
which are curves of load or stress amplitude S (during cyclic loading) versus the number N of cycles to
failure. One might similarly construct W±N curves, where W is the positive work of deformation during
a loading cycle. This paper does not explicitly distinguish between the two, since in either case the
loading quantity (S or W ) is identi®ed with the parameter P.

From a state space perspective, damage evolution is a deterministic process described by Eq. (4), a
failure surface h(f )=0, and damage initial conditions f(0)=fi. The time to failure T is determined by
the solution f(t ) to Eq. (4) with initial conditions fi, via the failure condition h(f(T ))=0. T will clearly
depend on both the load parameter P as well as the initial condition fi. Given fi, P can be plotted
against T, giving our theory's equivalent of an S±N curve.

From this perspective, the statistical variability observed in fatigue experiments arises from the initial
statistical distribution of fi in a sample, and the way this distribution evolves under Eq. (4). In fatigue
experiments, substantial statistical variability is usually observed even for carefully prepared specimens
with apparently little initial variation between them. This may be interpreted as sensitivity to initial
conditions of the time to failure. Furthermore, the variability in fatigue life is known to be high for high
cycle fatigue and somewhat lower for low cycle fatigue (Rothbart, 1996).

Many materials (including steel) have a fatigue limit: if loaded cyclically below this limit, they have
essentially in®nite life. Loading a specimen partially to failure, above the fatigue limit, results in a
lowering of the fatigue limit. Conversely, loading a specimen below the fatigue limit can increase its
fatigue limit to some extent.

Such qualitative observations provide guidelines for evaluating candidate forms for Eq. 4, as
mentioned above.

Practical applications of fatigue models involve loads with ¯uctuating amplitudes. For such
applications, the approach of S±N curves has been extended to `cumulative damage' approaches, the
earliest and best known of which is the Palmgren±Miner rule (Rothbart, 1996; Suresh, 1991, and
references therein). Twenty di�erent approaches to cumulative damage are discussed in Hwang and Han
(1986), which may be an indication of both the importance as well as unresolved nature of this issue.

A basic di�culty encountered with most cumulative damage formulas of the kind discussed in Hwang
and Han (1986) is that they ignore the dependence on initial conditions fi, something that we feel is of
primary importance. These various formulas attempt to guess the functional dependence of the time to
failure T on load parameters P, or perhaps postulate simple, directly integrable forms for g(f, P ) while
always starting from the same initial conditions, which is the same thing. The scatter observed in
experiments, which in our treatment is attributed to variations in fi, must then be directly incorporated
as an ad hoc statistical quantity.1

In contrast, the approach taken here is to postulate the form of g(f, P ) based on a combination of
mathematical considerations and physical observations, and to determine the time to failure T by
integrating Eq. (4) with appropriate initial conditions. Since numerical integration of nonlinear
di�erential equations has become easy with widespread access to computers, the loss of some of the
graphical interpretations of older techniques (such as the double-linear damage rule of Manson and
Halford, 1986, or the rotation of S±N curves about suitable points, as discussed in Kujawski and Ellyin,

1 Sun (1994) goes further and proposes that even the evolution of damage from specimen to specimen in the population should

be treated as a statistical quantity.
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1988) is not serious, and is compensated by greater generality, in that a wider variety of systems may be
studied.

Finally, we remark that papers treating the damage evolution problem often scale time t with respect
to the time to failure T (more precisely, they use n/N, or fraction of cycles to failure or `fraction of life').
In a dynamical systems approach it is natural to view T as being determined by the function g(f, P )
and the initial condition fi. The fraction of life concept involves an awkward scaling of time that is
dependent on initial conditions.2 However, to enable comparison with published experimental data
(Golos and Ellyin, 1988; Kujawski and Ellyin, 1988), in section 6 we express our results in the usual
fraction of life form.

5. The case of a scalar damage variable

In general, the damage variable f and parameter P in Eq. (4) are vector-valued. However, we now
consider in some detail the case where both the damage variable and load parameter are scalars, since
many basic ideas can be described easily in this context. Note that for this case, the damage `surface' is
a point, f=ff , assumed ®nite and nonzero. We assume that g(ff , P ) > 0, i.e. the point of failure is not
an equilibrium point.

The di�erent qualitative cases considered here are shown schematically in Fig. 1.

5.1. No equilibria

Consider Eq. (4), and the possibility that there are no equilibria for nonzero load, i.e. g(f, P )$0 for
any fr0 and P>0 (see Fig. 1(a)). Then the time to failure T is given by

T �
�ff

fi

df
g�f, P � : �5�

Since g>0, the integral is ®nite and the system must eventually fail. In fact, de®ning

Fig. 1. Various cases considered for single damage variableÐ(a) no equilibria; (b), (c) and (d) single equilibrium at f=0; (e) iso-

lated equilibrium at f0$0; (f) family of equilibria with a `dead zone' for 0 RfR f0.
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gmin : � min
0RfRff

g�f, P �,

the time to failure is bounded by 0R TR ff /gmin.
Clearly, there can be no fatigue limit for such systems. Furthermore, for carefully prepared, nearly

identical specimens (that is, when the variation in fi is small) the variation in time to failure is given by

DT1 dT

dfi

Dfi � ÿ
1

g�fi, P �
Dfi: �6�

Thus, the sensitivity of time to failure to variations in initial damage state will be small if initial
conditions are such that g(fi, P ) is large. This suggests, for example, that functions g which stay
bounded well away from zero are not appropriate for typical fatigue problems because they do not
show sensitivity to initial conditions nor the possibility of fatigue limits. Such functions might, of
course, be relevant to other problems with slowly accumulating damage.

5.2. Single equilibrium at zero damage

If f=0 is an equilibrium, i.e. g(0, P )=0 for P>0 (see Fig. 1(b)±(d)), then it is interesting to examine
the behavior for small f. We will examine this case in some detail.

Let us assume that g permits a power series representation in the neighborhood of zero, i.e.

df
dt
� g�f, P � � a0�P �fm�P � � � � � , �7�

and consider what happens if we retain only the ®rst term of this series.

5.2.1. Time to failure
Taking only one term and solving Eq. 7 gives the time to failure:

T � 1

a0�P �

 
f1ÿm�P �
f ÿ f1ÿm�P �

i

1ÿm�P �

!
for m�P �6�1, and �8a�

T � 1

a0�P � ln

 
ff

fi

!
for m�P � � 1: �8b�

The above indicates the following possibilities: if m(P ) < 1 (Fig. 1(b)), then the time to failure T is
essentially determined by ff for su�ciently small initial damage fi; if m(P )=1 (Fig. 1(c)), then T is
determined by the ratio of ff to fi; ®nally, if m(P ) > 1 (Fig. 1(d)) then T is essentially determined by fi

for small initial damage.

5.2.2. Insensitivity to higher order corrections
The case of m(P ) > 1 is interesting for the following reason. In this case, if fi is small, the time to

2 Scaling of variables in a way that is dependent on initial conditions is not incorrect, just awkward. In dynamics, one usually

views time and the system equations as separate from initial conditions. The evolution of the system with time is studied qualitat-

ively and simultaneously for all initial conditions of interest. This is di�cult if time or coordinates are transformed in ways depen-

dent on initial conditions.
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failure T is insensitive to higher order corrections in the power series representation of Eq. (7). To see
this, consider an equation of the form

df
dt
� g�f, P � � a0�P �f

m�P �

s�f� �9�

where s(f ) is a strictly positive function of f which is bounded everywhere, satis®es s(0)=1, and is
smooth in some neighborhood of f=0. Let the maximum value of s(f ) in the interval (0 R f R ff ) be
smax. We assume that fi is small, and that ff=O(1) with respect to fi. Then using Eq. (9), one ®nds

T � 1

a0�P �
�ff

fi

s�f� df

fm�P �

which can be split into two parts, T=I1+I2, where

I1: � 1

a0�P �
� ����

fi

p

fi

s�f� df

fm�P � and I2: � 1

a0�P �
�ff ����

fi

p
s�f� df

fm�P � :

The integral I1 is over a small domain in which s(f ) may be expanded in a power series since it is
smooth near zero: in the interval �0, �����

fi

p �, let s(f )=1+s1f+s2f
2+� � � for suitable constants s1, s2, . . . .

Assuming m(P ) is not an integer for simplicity (the case for integers involves logarithms, but leads to
similar conclusions), we ®nd that

I1 � 1

a0�P �

 
f1ÿm�P �
i

m�P � ÿ 1
� s1

f2ÿm�P �
i

m�P � ÿ 2
� � � �

!
� 1

a0�P �

 
ff1ÿm�P �g=2i

1ÿm�P � � s1
ff2ÿm�P �g=2i

2ÿm�P � � � � �
!
,

while I2 is bounded by

0 < I2R
smax

a0�P �
�ff ����

fi

p
df

fm�P � <
smax

a0�P �
�1 ����

fi

p
df

fm�P � �
smax

a0�P �
ff1ÿm�P �g=2gi

m�P � ÿ 1
:

Thus, for m�P � > 1, the leading order term for I1 provides a good approximation to T for small fi:

T1 1

a0�P �
f1ÿm�P �
i

m�P � ÿ 1
�10�

This shows that for m(P ) > 1, taking a single term in the power series is a valid approximation. In
®tting parameters to the model, only the leading order behavior near zero damage (i.e. the exponent
m(P )) needs to be determined. Higher order terms have a negligible e�ect on the time to failure if fi is
small.

We emphasize that our analysis is not intended to apply to the case when fi is allowed to be large.
For example, we will show later that in fatigue problems m(P ) will typically be a decreasing function of
the load P. In that case, it is easy to show (Chaboche, 1977) that if a ®rst load is held for a su�ciently
long time (i.e. f is allowed to become su�ciently large), and then followed by a reduction in load,
single-term power law models like the one presented above can incorrectly predict a reduction in the
small amount of remaining life. However, the single-term power law model discussed here is
asymptotically valid for systems with small initial damage (i.e. signi®cant remaining life). Thus the
contradictory qualitative predictions of such models near to failure are not relevant to our analysis.
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5.2.3. Sensitivity to initial damage state
The time to failure, for m(P ) > 1, will be strongly sensitive to variations in the initial damage state

for small fi since

dT

dfi

� ÿ 1

a0�P �
1

fm�P �
i

: �11�

In fact, the sensitivity indicated by Eq. (11) can be easily distinguished from the case when m(P ) < 1
since ���� dT

dfi

fi

���� 4 1 as fi 4 0 for m�P � > 1, whereas

���� dT

dfi

fi

���� 4 0 as fi 4 0 for m�P � < 1:

If we con®ne our attention to systems with m(P ) > 1, and consider only small initial damage, we can
ignore the small relative error and treat Eq. 10 as exact, especially in view of the high variability
typically observed in fatigue data (as much as a factor of ®ve or more). We remark that treating Eq. 10
as exact is equivalent to treating ff as in®nity.

The implication is that in using such a model, the failure point ff need not be determined since it has
a negligible e�ect on the time to failure if fi is small.

5.2.4. The suitability of m(P)> 1 for fatigue problems
Thus, m(P ) > 1 seems appropriate for fatigue problems for several reasons. In a wide variety of

fatigue experiments, it is observed that

1. damage (in the form of macroscopic cracks) becomes visible fairly late in the process, and
2. small di�erences in specimens cause large variations in time to failure.

In the context of our discussion, note that if m(P ) > 1 and fi is small, then the damage stays small for
a long time, followed by rapid growth near the end. This is qualitatively consistent with observation 1
above. The fact that small changes in fi can cause large variations in T, qualitatively matches
observation 2 above. That T is relatively insensitive to the precise form of g(f, P ) except in the
neighborhood of f=0, and also insensitive to the failure point ff so long as it is much larger than fi, is
consistent with the observation that items 1 and 2 above seem to hold for a wide variety of fatigue
experiments on components of di�erent materials, shapes, etc.

While keeping in mind that f is not to be thought of as necessarily being the length of a crack, we
note in passing that in Paris's Law for crack growth, the exponent of the stress intensity factor range is
typically around 3, i.e. greater than 2 (Suresh, 1991). The stress intensity factor for a given load is
roughly proportional to the square root of the crack length, for cracks that are small compared to the
dimensions of the component, under linear elastic fracture mechanics. This gives an exponent m(P ) that
is typically around 1.5, i.e. greater than unity.

5.2.5. The forms of the functions a0(P) and m(P)
Ideally, one would use physical theories from materials science and mechanics or some other branch

of physics to propose suitable forms for the unknown functions a0(P ) and m(P ). However, qualitative
reasoning based on experimental data can also be used to deduce fundamental properties of these
functions. For example, in this one-variable formulation, the time to failure T is a monotonically

J.P. Cusumano, A. Chatterjee / International Journal of Solids and Structures 37 (2000) 6397±6417 6405



decreasing function of the initial damage fi, so if fi has some statistical variation, then the median
value of fi gets mapped to the median value of T. Noting that T is actually a function of both fi and P
in this case, and considering the median value of fi, Eq. (10) de®nes the general form of an `S±N' curve
(more properly, a P±T curve) for a system with m(P ) > 1. This fact allows experimental data to be used
to draw further conclusions about a0(P ) and m(P ).

To demonstrate the basic idea, suppose that a linear ®t to S±N data on a semilog scale is considered
appropriate for some range of S. Then in that range (identifying P with S and T with N ) we have

P � P0 ÿ a ln T, or T � e

�
P0 ÿ P

a

�
�13�

where P0 > 0 and a> 0 are experimentally determined constants for a given specimen type that depend
on fi only, and P is in some suitable range PA R P R PB. Using Eqs. (10) and (13), we obtain
(explicitly writing the functional dependence of a and P0 on fi)

a0�P � � e
ÿ
�
P0�fi � ÿ P

a�fi �
�

f1ÿm�P �
i

m�P � ÿ 1
�14�

Since the left hand side of Eq. (14) is independent of fi, the right hand side must be independent of fi

also. Temporarily introducing the variable r � ln fi and writing P0 and a as functions of r instead of fi,
we obtain

a0�P � � e
ÿ
�
P0�r� ÿ P

a�r�
�
�rf1ÿm�P �g

m�P � ÿ 1

which implies that the exponent in the numerator of a0(P ),

ÿ
�
P0�r� ÿ P

a�r�
�
� rf1ÿm�P �g � Z�P �, �15�

must be independent of r. Di�erentiating Eq. (15) with respect to P and then r, one ®nds

a 0�r�
a2�r� � ÿm

0�P �: �16�

Since the left hand side of Eq. (16) is a function of r only, while the right hand side is a function of P
only, it must be that both of these are the same constant, say m1. Therefore,

m�P � � m0 ÿ m1P and
1

a�r� � C0 ÿ m1r

where m0 and C0 are constants.3 Substituting into Eq. (15) and di�erentiating with respect to P, we ®nd

3 Note that r � ln fi is an increasing function of fi. Assuming C0 > 0 and m1 > 0, we see that a is an increasing function of fi

(assuming a>0). Thus, for a batch of several specimens with some statistical variability in fi, the smaller values of fi correspond

to a shallower line and the larger values of fi correspond to a steeper line. This leads to greater relative variability, i.e. on a log

scale, at high cycle fatigue than at low cycle fatigue, as is observed in practice (Rothbart, 1996). This observation provides some

qualitative support for taking m(P )> 1.
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Z 0�P � � C0 �) Z�P � � C0P� ln m2,

where m2 is a constant of integration. Substitution for Z(P ) back into Eq. (14) yields the general form of
the governing damage evolution equation for this class of system (scalar damage variable with
equilibrium at zero and local power law exponent m(P ) > 1):

df
dt
� m2 eC0P

m0 ÿ 1ÿ m1P
fm0ÿm1P, �17�

assumed to be valid for some range of the load parameter PA R P R PB. In Eq. (17), m0, m1, m2 and C0

may be looked upon as material constants, in that they are properties of a given type of specimen under
a given loading mode, but not dependent on the magnitude of the load or the specimen's initial damage
state. These constants can in principle be determined experimentally (using regression) from several sets
of multi-level fatigue tests on a batch of `identical' specimens. In the presence of statistical variability in
fi, median values should be used, as discussed earlier.

The foregoing analysis provides a good example of how qualitative dynamical features of basic
quantities of interest can sometimes guide modeling, without recourse to detailed underlying physics
(such as considerations of microstructure evolution).

The model developed here can be used for systems that have some of the many features observed
experimentally, namely statistical variability in T (which here corresponds to sensitivity to initial damage
state), with more scatter at lower loads. However, fatigue limits cannot be modeled. We remark that if
the S±N curve for a system is known to be linear for some range of loads on a log±log plot, instead of a
semi-log plot as assumed above, then the foregoing analysis still applies if we consider P to be log S.

We close this Section with a remark about the so-called linear damage summation rule, or the
Palmgren±Miner rule (Suresh, 1991). For systems that obey Eq. 17 above, with m1=0, it is easy to show
that the Palmgren±Miner rule will hold. If m1> 0, then the rule does not hold.

5.3. Isolated equilibria at nonzero f

Next we consider the case of an isolated equilibrium at a nonzero value of damage f=f0(P ), as
shown in Fig. 1(e). We will show why this case does not seem useful in the context of fatigue damage
problems.

Note that if we are only interested in initial damage states fi > f0(P ), then we can shift the origin to
f0(P ) or beyond and use the analyses in Sections 5.1 or 5.2. Thus, the case of an isolated equilibrium at
f0(P ) is only relevant if we expect fi< f0(P ) for at least some cases of interest.

If P is held ®xed and the initial damage fi R f0, then the system never fails. Thus, these models can
predict fatigue limits, unlike the cases considered previously in this section. Again considering only the
leading term in the power series expansion, we write the damage evolution law near the isolated
equilibrium of Fig. 1(e) as

_f � a0�P � j fÿ f0�P � jm�P � : �18�
We expect a family of equilibria f0(P ), for 0 R P R Pmax. That is, we expect the isolated equilibrium to
persist under small changes in P. To see why, let us brie¯y suppose that the equilibrium disappears
under small changes in P, i.e. that g(f0, P0)=0, but there is no other point (f, P ) in some
neighborhood of (f0, P0) such that g(f, P )=0. This means that the system will fail for P both less than
as well as more than P0, yet will not fail for P0. Such a model is not useful in fatigue, where we expect
the system to not fail at loads below P0. We conclude that, for fatigue applications, the isolated
equilibrium f0 persists for some range of P.

J.P. Cusumano, A. Chatterjee / International Journal of Solids and Structures 37 (2000) 6397±6417 6407



Now we show that such systems predict behavior that contradicts experimental observations. Let
there be two loads P1 and P2, with P2> P1, and with corresponding equilibria f01 and f02, respectively.

If f0 is an increasing function of P, then f02> f01. If the system starts with an initial damage fi such
that f01 < fi < f02, then for the load P1 the system fails, while for the larger load P2 the system
approaches an equilibrium and does not fail. This feature contradicts fatigue studies. Therefore, f0(P ) is
not an increasing function.

On the other hand, if f0 is a decreasing function of P, then f01 > f02. If the system starts with an
initial damage fi < f02, then the loads P1 and P2 are both below the fatigue limit for that system.
However, if the system is loaded at load P1 for a long time, then it approaches the equilibrium f01

which is greater than f02. Now, loading at P2 will cause failure. Thus the fatigue limit for this system is
lowered by initial loads below the fatigue limit. This possibility is again contrary to what is observed in
practice.

This just leaves the possibility that f0 is a constant independent of PÐbut in that case no system
starting with initial damage less than f0 ever fails for any load. Recall that for systems that start with fi

> f0 we may as well change variables to f̂ � fÿ f0, which becomes the case in Fig. 1(d) already
discussed in the previous Section.

We conclude that isolated equilibria as in Fig. 1(e) are not useful in damage laws, at least for fatigue
models.

5.4. A dead zone

Finally, we consider the case where a family of equilibria exists which forms a `dead zone', that is an
entire interval 0 R f R f0 for which g(f, P )=0 for P in some range, as shown in Fig. 1(f). We will
consider this case in some detail, and use a model of this type in section 6 to ®t and predict some
experimental data.

We mention in passing that such dead zones are used, for example, in crack growth models with
experimentally determined `threshold' stress intensity factors (Suresh, 1991; Liu-Nash et al., 1997). As
before, however, we refrain from considering speci®c physical processes and merely view Fig. 1(f) as a
natural candidate to examine in the context of scalar damage laws.

As with the isolated equilibrium case (Section 5.3), it is clear that if P is held ®xed and the initial
damage fi R f0, then the system never fails. Thus, models with a dead zone can predict fatigue limits.
However, in this case the damage remains constant for fi R f0, and does not approach f0.

5.4.1. The form of F0(P)
If f0(P ) is an increasing function of P, then there are states of initial damage fi for which failure

occurs for lower P (or lower load) but not higher P (or higher load). Thus, for fatigue applications, we
expect f0(P ) to be a decreasing function.

As with our discussion of the functions a0(P ) and m(P ) in section 5.2, one would like to use physical
theories to propose suitable forms for f0(P ), the unknown fatigue limit function. For example, if we
explicitly consider the damage f to be the size of a small crack in a specimen, and use linear elastic
fracture mechanics, then the stress intensity factor K is roughly proportional to

����
f

p
and the load (say

P ), i.e. K1CP
����
f

p
for some constant C (Suresh, 1991 and the references therein). If we knew that a

minimum `threshold' stress intensity factor Kth is needed for crack growth, then we would use
Kth � CP

������
f0

p
, or f0(P )APÿ2.

In this paper, we avoid this particular form for several reasons. We do not want the damage variable
f to be necessarily taken as a crack length. Moreover, crack length may not be a suitable variable in
any case. Crack growth in the initial stages is nonsmooth due to microstructural interactions (James and
de los Rios, 1996; Hussain et al., 1993) and use of the stress intensity factor to predict the growth of

J.P. Cusumano, A. Chatterjee / International Journal of Solids and Structures 37 (2000) 6397±64176408



small cracks can be problematic even without considerations of microstructure (Kfouri, 1997). Our
intention in this paper is to see to what extent purely abstract considerations of qualitative dynamic
behavior can lead to models that are useful for fatigue problems.

Accordingly, for f0(P ) we tentatively select a simple function with the required monotonicity with
respect to P:

f0�P � � F0 eÿgP � F1, �19�
which as before is assumed to be a reasonable approximation in some range of interest, PA R PR PB.

The analysis that follows is easily adapted to di�erent forms of f0(P ), if needed.

5.4.2. The form of the damage law
Once again considering only the leading term in the power series expansion, we write the damage

evolution law for f near f0 as

_f � a0�P ��fÿ f0�P ��m�P � for f > f0 and 0 otherwise �20�
We now show that such a model can capture several features of systems commonly encountered in the
context of fatigue. Consider the plot in the (f, P ) plane of a system with a dead zone shown in Fig. 2.

In the ®gure, the shaded region is the dead zone: in it, all points are equilibria. If the system has an
initial damage state of f1, then so long as the load P < P1, the system is in equilibrium (that is, the
damage state is constant). Thus, P1 is the fatigue limit for the system. However, if the system is loaded
at a load level PA > P1, then damage accumulates. If loading is stopped before failure, at a damage
level f2> f1, then the new fatigue limit is PB< P1.

Just as with the previous cases, the power-law behavior with exponent m(P ) > 1, for fi greater than
but su�ciently near f0(P ), gives the system with a dead zone a time to failure T that is sensitive to
initial conditions, but relatively insensitive to the failure point ff . The variability in T is greater for
high-cycle fatigue than for low-cycle fatigue. Moreover, due to the presence of the dead zone, the system
has a fatigue limit: loading above the fatigue limit, part of the way to failure, damages the system
further and gives a new (lower) fatigue limit.

Directly using Eq. (10) and Eq. (20), one can write the time to failure as

Fig. 2. Plot of the system in Fig. 1(f) showing the variation in f0(P ). _f is strictly zero in the shaded `dead zone', and positive else-

where. Trajectories of the system for f> f0(P ) with P ®xed move up, parallel to the f axis.
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T1 1

a0�P �
ffi ÿ f0�P �g1ÿm�P �

m�P � ÿ 1
for fi > f0�P �, and1 otherwise: �21�

Using the fatigue limit function of Eq. (19) with Eqs. (17) and (20) as motivation, we now propose

df
dt
� m2 eC0P

m0 ÿ 1ÿ m1P
�fÿ F0 eÿgP ÿ F1�m0ÿm1P for f > F0 eÿgP � F1 and 0 otherwise: �22�

The form of Eq. (22) (e.g. the exponent m0ÿm1P ) is justi®ed as follows. Much of the analysis in this
paper is based on asymptotic considerations of small fi or small fiÿf0(P ), where f0(P ) may be
considered comparable to some fi of interest, and thus also small. In this case, however, if a specimen is
initially loaded part of the way to failure so that the damage f reaches some intermediate range of
magnitude, f0�P � � fint � 1, then for the rest of the life of the specimen the e�ect of f0(P ) is
negligible. However, since fint � 1, the local power law behavior still dominates. If we now consider a
batch of such specimens, and assume linearity of the S vs log N curves for a range of small initial
damage fint, then by the previous analysis the exponent m(P ) and the coe�cient a0(P ) must have the
same forms as before.

The damage evolution model given by Eq. (22) has seven free parameters which must be ®tted to
experimental data. In addition, the fact that the damage state is (by hypothesis) not directly observable
means that the initial condition fi must also be ®tted as an unknown quantity. The model can predict
fatigue limits as well as the lowering of fatigue limits on partial loading to failure; shows sensitivity to
initial conditions and thus explains the scatter observed in fatigue experiments; shows relative
insensitivity to the termination or failure criterion; and, for loads well above the fatigue limit, predicts
an approximately linear S-log N (that is, P-log T ) curve.

6. Comparison with data from the fatigue literature

In the previous section, we have deduced a suitable form for a model for damage evolution by
considering some well known qualitative features of damage dynamics. The damage variable has not
been explicitly identi®ed with physical phenomena such as crack growth, nor the load parameter P with
physical quantities such as stress, strain, or work of deformation. The qualitative dynamics perspective
used in this work is quite general, and is expected to be applicable to a variety of systems with slowly
accumulating damage, not just those with fatigue.

Since the formulation is guided by qualitative features of fatigue phenomena, we now present an
example of ®tting our abstractly-derived model to experimental data. In particular, we compare the data
of Golos and Ellyin (1988) to the predictions of our model as given by Eq. (23). Golos and Ellyin's data
pertains to multi-level, fully reversed, strain-controlled cyclic loading of carefully prepared low-alloy
steel specimens with a circular cross section. For each test, the fraction of life as measured in the ®nal
stage of loading was compared to predictions of their model. Here, using some ®tted parameters, we
compare our predictions to theirs.

6.1. Some remarks on ®tting parameters

First of all, we observe that in the fatigue tests of Golos and Ellyin, the time to failure is monitored
but the damage variable is never explicitly identi®ed, nor monitored. In other words, there is no
transitional data. In such cases, a choice of a damage variable f is indistinguishable from a
monotonically increasing function of f, such as (say) af 2+b for constants a and b.
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Given this lack of transitional data, the damage variable is indeterminate to some extent. This is
re¯ected in the fact that the problem of ®tting the unknown parameters to experimental data is
numerically ill-conditioned.

The implications of the indeterminacy mentioned above, for the design of fatigue experiments and the
interpretation of fatigue data, deserve further investigation. These issues, and their interpretation from a
physical perspective, will need to be studied in future work. For this work, the indeterminacy in the
parameters was removed in two ways that are described in the next two Sections.

We mention that we also separately carried out the ®tting procedure without eliminating any of these
parameters, and the prediction errors obtained were about the same as those presented here (within the
precision of available data), though the numerical calculations for ®tting the parameters were more
delicate. For brevity, those results are not presented here.

6.2. Shifting and scaling the damage variable

We can eliminate two constants from Eq. (22), as follows. In the absence of an explicitly identi®ed
damage variable, it is natural to let the decreasing function f0(P ) go from unity to zero over the
interval of interest.

Let us, as before, con®ne our attention to a load range PA R P R PB. The new variable c is de®ned
via F2 c+F3=f, where F2: � F0(e

ÿgPAÿeÿgPB) and F3: � F0 eÿgPB+F1. This gives

dc
dt
� m3eC1P

m0 ÿ 1ÿ m1P
�cÿ c0�P ��m0ÿm1P for c > c0�P � and 0 otherwise, �23�

where

c0�P � �
eÿgP ÿ eÿgPB

eÿgPA ÿeÿgPB
, �24�

and where m3 � m2F
m0ÿ1
2 and C1=C0ÿm1 ln F2.

Note that now the scaled initial damage ci is expected to be comparable in magnitude to unity, and
the failure point cf>>1 is treated as in®nity.

The fatigue limit function f0(P ) now satis®es c0(PA)=1 and c0(PB)=0.

6.3. Choice of m0 in the absence of transitional data

Changes of variables of the form f̂: � A fb for suitable positive constants A, b can be used in Eq. 17,
e.g. to obtain a similar equation but with m0 > 1 changed to the new value 1+(m0ÿ1)/b (also greater
than 1). If the damage variable f is observable, directly or indirectly, then there may be a physically
motivated reason to consider or retain a certain m0. However, if such observations or transitional data
are not available, then the parameter m0 is indeterminate; we can change variables in Eq. 17 so as to
choose a speci®c value for m0, say m0=2.

Recall that for values of P and f such that f0(P )<<f<<1, the power law behavior as in Eq. 17 is a
good approximation to Eq. 23. Based on this reasoning, in this section, we will use m0=2.

6.4. Results of parameter ®tting and life prediction

In Eq. (23), the load parameter P is identi®ed with % strain, after Golos and Ellyin (1988). Since the
data is given in terms of fraction of life, i.e. time scaled with respect to time to failure at each load, the
parameters m3 and C1 drop out, and cannot be identi®ed from the fraction-of-life data. As explained
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above, we selected m0=2. Since the loading range was between 0.15% and 0.80% strain amplitude, we
set PA=0.15 and PB=0.80. Using a gradient search technique for least squares ®tting, the following
numerical values were obtained for the remaining three parameters, using 23 out of the 24 two-level
tests (see Table 1):

ci � 1:17178 �scaled initial damage�

g � 9:51244

m1 � 0:13035

Table 1

Comparison with fatigue data of Golos and Ellyin (1988). In the second column, each ordered pair represents a load and time: e.g.

`(0.80, 0.25)' represents cyclic loading at 0.80% strain amplitude for 25% of the total life at that load. Two stage load-time

sequences are represented by two ordered pairs, three stage by three, etc. The second number in the last of the ordered pairs

represents the fraction of life at the last loading stage. The third column shows the prediction of this same number as given in

Golos and Ellyin. The fourth column shows the prediction of this same number as given by Eq. (23), with parameters ®tted to the

two-level test data. See text for details

Test no. Load-time sequence (% strain, fraction of life) Predictions of Golos and Ellyin From Eq. (23)

1 (0.80, 0.80), (0.60, 0.16) 0.18 0.19

2 (0.80, 0.60), (0.60, 0.38) 0.36 0.39

3 (0.80, 0.45), (0.60, 0.57) 0.50 0.54

4 (0.80, 0.25), (0.60, 0.69) 0.70 0.74

5 (0.60, 0.10), (0.80, 0.96) 0.93 0.90

6 (0.60, 0.22), (0.80, 0.82) 0.82 0.79

7 (0.60, 0.50), (0.80, 0.57) 0.54 0.51

8 (0.60, 0.74), (0.80, 0.20) 0.29 0.27

9 (0.60, 0.92), (0.80, 0.30) 0.29 0.09

10 (0.50, 0.80), (0.20, 0.20) 0.11 0.10

11 (0.50, 0.78), (0.20, 0.15) 0.12 0.11

12 (0.50, 0.44), (0.20, 0.30) 0.35 0.37

13 (0.50, 0.34), (0.20, 0.60) 0.44 0.47

14 (0.50, 0.25), (0.20, 0.45) 0.52 0.58

15 (0.50, 0.17), (0.20, 0.66) 0.61 0.69

16 (0.20, 0.27), (0.50, 0.96) 0.92 0.85

17 (0.20, 0.54), (0.50, 0.53) 0.69 0.65

18 (0.20, 0.81), (0.50, 0.34) 0.33 0.34

19 (0.50, 0.88), (0.15, 0.06) 0.04 0.02

20 (0.50, 0.66), (0.15, 0.12) 0.12 0.07

21 (0.50, 0.22), (0.15, 0.34) 0.36 0.34

22 (0.15, 0.56), (0.50, 0.88) 0.86 0.85

23 (0.15, 0.37), (0.50, 0.92) 0.96 0.92

24 (0.15, 0.19), (0.50, 0.97) 0.99 0.97

25 (0.80, 0.50), (0.60, 0.30), (0.20, 0.07) 0.10 0.09

26 (0.80, 0.50), (0.20, 0.18), (0.60, 0.30) 0.16 0.23

27 (0.20, 0.18), (0.60, 0.50), (0.80, 0.62) 0.51 0.42

28 (0.20, 0.18), (0.80, 0.62), (0.60, 0.54) 0.33 0.28

29 (0.80, 0.30), (0.60, 0.19), (0.40, 0.21), (0.20, 0.10) 0.12 0.15

30 (0.20, 0.09), (0.80, 0.10), (0.40, 0.54), (0.60, 0.59) 0.32 0.33

31 (0.80, 0.10), (0.20, 0.50), (0.60, 0.10), (0.40, 0.39) 0.13 0.36

32 (0.20, 0.27), (0.40, 0.27), (0.60, 0.37), (0.80, 0.44) 0.34 0.24
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In ®tting these parameters, test ]9 was not used because it appears to contain an error: though the loads
were the same as in test ]8, column 2 of the table states that the specimen for test ]9 lasted 50% longer
at the ®nal loading stage than the specimen for test ]8, even though it was loaded 24% longer at the
®rst loading stage.

Observe that ci is positive and comparable to 1, g > 0, and m0±m1P > 1 in the range of interest, as
deduced in the previous section. Using these ®tted parameters, the fatigue limit Plim is predicted, by
equating c0(P ) of Eq. (24) to the ®tted value of ci given above and then solving for P, as

Plim � 0:133% strain:

Having ®tted the parameters to some data, it is necessary to check these ®tted values against some other
data. To this end, we used the ®tted parameters to predict the outcomes of the three- and four-level tests
(25 through 32). The results are shown in Table 1. We summarize our results as follows.

1. For the ®tting data, i.e. tests 1 through 8 and 10 through 24, the r.m.s. value of the di�erence
between experiments and the predictions of Golos and Ellyin (1988) is 0.063. For these same tests,
the r.m.s. di�erence between experiments and predictions from Eq. (23) is 0.066. Also for these same
tests, the r.m.s. di�erence between the two predictions, Eq. (23) and Golos and Ellyin (1988) is 0.037.
Finally, we note that the r.m.s. error for these same tests, on using the Palmgren±Miner `linear
damage summation rule', would be 0.192.

2. For the remainder of the data, i.e. the three- and four-level tests, the r.m.s. di�erence between
experiments and predictions of Golos and Ellyin (1988) is 0.169. The r.m.s. di�erence between
experiments and predictions from Eq. (23) is 0.167. The r.m.s. di�erence between the two predictions,
Eq. (23) and Golos and Ellyin (1988), is 0.099. And the r.m.s. error from using the Palmgren±Miner
rule would have been 0.249.

Thus, the model of Eq. (23) performs about as well as the model of Golos and Ellyin. The predictions
of the two models are closer to each other than they are to the experimental results. Both models (Eq.
(23) and Golos and Ellyin) seem to provide signi®cant improvements over the Palmgren±Miner rule, at
least for the two-level tests. For the three- and four-level tests, the improvement over the Palmgren±
Miner rule is not as marked, but still signi®cant.

We can go further with the data of Golos and Ellyin by using the model of Eq. (23) to estimate the
S±N curve for the system, or the `P±T' curve in our formulation. Using the additional information in
Golos and Ellyin (1988), that the number of cycles to failure for 0.15% and 0.80% strain were 535,920
and 1000, respectively, the two remaining parameters m3 and C1 can be estimated, resulting in4

m3 � 3:78873� 10ÿ6, and C1 � 6:79216:

Using these numerical values, the P±T curve can be generated. Since the initial state of damage ci has
been explicitly identi®ed, the e�ect of uncertainty in initial conditions can also be plotted. Fig. 3 shows
the result: the P±T curve itself is shown by the solid line; the dotted line shows the fatigue limit; the
chain-dashed lines show the P±T curves for states of initial damage that are 20% higher and lower than
the estimated ci.

We remark that the assumed 20% variation in initial damage does not produce as much variation in
time to failure as typically seen in fatigue experiments. Within the present scalar damage variable

4 Observe that m3 is a small number: this is because these parameters are ®tted to time in loading cycles, which corresponds to

fast time. The rate constant E discussed in section 2 can be chosen, for example, as E=10ÿ6. Then the value of m3 corresponding to

the slow time will be the constant 3.78873.
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formulation, this suggests that the distribution of initial damage states must be larger than 20%, which
may contradict one's intuition about the scatter of initial damage states in carefully prepared specimens.
However, it must be noted that the initial damage state is not directly measurable, and therefore one
must acknowledge that any intuition in the matter cannot at this time be based on experimental fact.
Furthermore, potential damage nucleation sites in any system are widely distributed, and thus the
nucleation process is itself very high-dimensional. It is only after nucleation that the damage localizes
and permits a low-dimensional description. Thus the eventual low-dimensional behavior exhibited by the
system starts with an e�ective initial condition fi which is itself generated by a high-dimensional
nucleation process. This nucleation process can be extremely sensitive to initial defects and
microstructural details, and therefore it is not inconceivable that the initial scatter in fi is larger than
intuition might initially suggest. However, further discussion of this issue is outside the scope of this
paper, and is left for future work.

7. Discussion and conclusions

In this paper, we have developed a vocabulary and mathematical framework within which to model
and analyze the nonlinear dynamics of damage evolution. The relationship between the full state space

Fig. 3. Predicted P±T curve along with scatter estimates based on220% variation in initial damage state. Here, P is % strain, and

T0N where N is the number of cycles to failure. Somewhat higher scatter is seen in the high cycle fatigue range, as expected (see

footnote 3).

J.P. Cusumano, A. Chatterjee / International Journal of Solids and Structures 37 (2000) 6397±64176414



description of hierarchical systems with evolving damage, and damage evolution laws relating the rate of
damage accumulation to current damage state and load, has been established using the notion of
averaging. The basic elements of a qualitative theory of damage evolution have been presented. This
approach emphasizes the relationship between model structure and the qualitative features of damage
dynamics relevant to failure prediction (such as failure surfaces, time to failure T, and variability of T as
a function of uncertainty in initial damage state).

We have shown that much can be deduced about the models needed to predict damage evolution
using this qualitative approach: in particular, we have performed a detailed analysis of the scalar
damage variable case as it pertains to fatigue problems. The notions of a failure surface and initial state
sensitivity, together with phenomenological observations from the literature, have been used to analyze
the dynamical characteristics of several basic damage evolution laws. A speci®c model obtained as the
result of this analysis, where the damage rate law permits a fatigue limit, was developed and successfully
applied to the multi-level fatigue data of Golos and Ellyin (1988). It was found that the prediction using
the model of Eq. (23) and the prediction of Golos and Ellyin, which is based on the work of
deformation, have nearly identical r.m.s. errors (to experimental precision).

As the title of this paper suggests, the work presented here is only a ®rst step in what is potentially a
very general program. There are many issues which need to be addressed in future work. One issue in
particular relates to the required dimensionality of the damage state variable. Some physical
observations in even simple, uniaxial fatigue tests can apparently be captured in a simple way only if
more than one damage variable is introduced. For example, the increase in the fatigue limit of a
specimen that is loaded cyclically below its fatigue limit cannot be captured by the model presented
here. In fatigue problems where the load is described by more than one parameter, it will also be
necessary to consider two or more damage variables (Zhang and Miller, 1996).

In the scalar damage variable model developed here, not all parameters (including the initial damage
state) can be determined from a single S±N curve. More information is needed, which can take the form
of transitional data during the course of an experiment at a single load-level, failure times of multi-level
tests (as in this paper), or some combination thereof. More traditional approaches to fatigue failure
prediction aim to develop models for which all parameters can be estimated from a single S±N curve
(Chaboche and Lesne, 1988). In contrast with our formulation, these conventional approaches restrict
the form of the model using additional physical or empirical information. The larger number of free
parameters in our model is an inescapable consequence of making no a priori assumptions about the
damage physics, and of basing our development only on qualitative aspects of the dynamical behavior,
as explained in Section 5.2.5.

The explicit formulation of the damage evolution problem in a state space setting is, we believe,
ultimately required for true failure prediction of individual components or machines, as opposed to
statistical or population based failure prediction schemes. The perspective presented here should be
interpreted as being complementary to physics, not antithetical to it. On the one hand, qualitative
dynamical analysis is a powerful tool for validation of proposed physics-based damage models. On the
other hand, physics-based formulations are needed to clarify the physical origins and/or interpretations
of the various parameters in our abstractly-derived dynamical models.
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Appendix A

A sample averaging calculation

In general, it will not be possible to analytically carry out the averaging procedure discussed in section
2: all that is required from our point of view is that such an approximation exists in principle. However,
in some cases slow ¯ow equations can be explicitly calculated, and to better illustrate the averaging
procedure we have selected the following simple example of a forced, damped, harmonic oscillator with
a slowly weakening spring:

�y� c _y� k�f�y � F sin ot �25a�

_f � Ef2y2 _y2 �25b�
where k�f�: � 1� eÿaf for some positive constant a. Eq. (25a) can be rewritten in ®rst order form to
match Eq. (1a), but we proceed directly.

As with Eq. (2), we note that Eq. (25a) with f constant has a well de®ned steady state behavior
regardless of initial conditions, which we write as

Y0�t� � A sin ot� B cos ot

for suitable A and B (not reproduced here). Next, as in Eq. (3), the average of the right hand side of
Eq. (25b) with respect to the fast time t is found:5

lim
T41

1

T

�T
0

f2Y 2
0

_Y
2

0 dt,

which gives the slow ¯ow equation

df
dt
� f2o2F 4

8f�k�f� ÿ o2�2 � o2c2g2 , �26�

where k(f )=1+eÿaf. The right hand side of the above equation is the g(f, P ) of Eq. (4). In this case
we can take P0F 4 as our load parameter.

Numerical solutions to Eqs. (25a) and (25b) for small E and reasonable choices of c, F, o, and a show
good agreement with the predictions of the averaged Eq. (26). In particular, the numerical solutions
show that for this case, over time intervals of O(1/E ), the di�erence between the averaged solution and
the exact solution is O(E ).

Finally, expanding Eq. (26) in a Taylor series in f results in

df
dt
� f2o2F 4

8f�4ÿ o2� 2 � o2c2g2 � O�f3�: �27�

Thus in this simple example the exponent m(P ), discussed in section 5, is a constant independent of P
(that is, m=2).

5 Actually, since the steady-state response is periodic in this case, we might average over one period, but the limit indicated here

would be required if the forcing were, say, the quasiperiodic sum of two parts oscillating at incommensurate frequencies, or if tran-

sients were included.
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